3.121 \(\int \frac {\sqrt {d+e x^2} (a+b \text {csch}^{-1}(c x))}{x} \, dx\)

Optimal. Leaf size=26 \[ \text {Int}\left (\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{x},x\right ) \]

[Out]

Unintegrable((a+b*arccsch(c*x))*(e*x^2+d)^(1/2)/x,x)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{x} \, dx \]

Verification is Not applicable to the result.

[In]

Int[(Sqrt[d + e*x^2]*(a + b*ArcCsch[c*x]))/x,x]

[Out]

Defer[Int][(Sqrt[d + e*x^2]*(a + b*ArcCsch[c*x]))/x, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{x} \, dx &=\int \frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{x} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.62, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{x} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(Sqrt[d + e*x^2]*(a + b*ArcCsch[c*x]))/x,x]

[Out]

Integrate[(Sqrt[d + e*x^2]*(a + b*ArcCsch[c*x]))/x, x]

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {e x^{2} + d} {\left (b \operatorname {arcsch}\left (c x\right ) + a\right )}}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))*(e*x^2+d)^(1/2)/x,x, algorithm="fricas")

[Out]

integral(sqrt(e*x^2 + d)*(b*arccsch(c*x) + a)/x, x)

________________________________________________________________________________________

giac [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x^{2} + d} {\left (b \operatorname {arcsch}\left (c x\right ) + a\right )}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))*(e*x^2+d)^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(e*x^2 + d)*(b*arccsch(c*x) + a)/x, x)

________________________________________________________________________________________

maple [A]  time = 0.45, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \,\mathrm {arccsch}\left (c x \right )\right ) \sqrt {e \,x^{2}+d}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))*(e*x^2+d)^(1/2)/x,x)

[Out]

int((a+b*arccsch(c*x))*(e*x^2+d)^(1/2)/x,x)

________________________________________________________________________________________

maxima [A]  time = 0.00, size = 0, normalized size = 0.00 \[ -{\left (\sqrt {d} \operatorname {arsinh}\left (\frac {d}{\sqrt {d e} {\left | x \right |}}\right ) - \sqrt {e x^{2} + d}\right )} a + b \int \frac {\sqrt {e x^{2} + d} \log \left (\sqrt {\frac {1}{c^{2} x^{2}} + 1} + \frac {1}{c x}\right )}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))*(e*x^2+d)^(1/2)/x,x, algorithm="maxima")

[Out]

-(sqrt(d)*arcsinh(d/(sqrt(d*e)*abs(x))) - sqrt(e*x^2 + d))*a + b*integrate(sqrt(e*x^2 + d)*log(sqrt(1/(c^2*x^2
) + 1) + 1/(c*x))/x, x)

________________________________________________________________________________________

mupad [A]  time = 0.00, size = -1, normalized size = -0.04 \[ \int \frac {\sqrt {e\,x^2+d}\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)^(1/2)*(a + b*asinh(1/(c*x))))/x,x)

[Out]

int(((d + e*x^2)^(1/2)*(a + b*asinh(1/(c*x))))/x, x)

________________________________________________________________________________________

sympy [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acsch}{\left (c x \right )}\right ) \sqrt {d + e x^{2}}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))*(e*x**2+d)**(1/2)/x,x)

[Out]

Integral((a + b*acsch(c*x))*sqrt(d + e*x**2)/x, x)

________________________________________________________________________________________